3 research outputs found

    A pragmatic approach to multi-class classification

    Full text link
    We present a novel hierarchical approach to multi-class classification which is generic in that it can be applied to different classification models (e.g., support vector machines, perceptrons), and makes no explicit assumptions about the probabilistic structure of the problem as it is usually done in multi-class classification. By adding a cascade of additional classifiers, each of which receives the previous classifier's output in addition to regular input data, the approach harnesses unused information that manifests itself in the form of, e.g., correlations between predicted classes. Using multilayer perceptrons as a classification model, we demonstrate the validity of this approach by testing it on a complex ten-class 3D gesture recognition task.Comment: European Symposium on artificial neural networks (ESANN), Apr 2015, Bruges, Belgium. 201

    A light-weight real-time applicable hand gesture recognition system for automotive applications

    No full text
    International audienceWe present a novel approach for improved hand-gesture recognition by a single time-of-flight(ToF) sensor in an automotive environment. As the sensor's lateral resolution is comparatively low, we employ a learning approach comprising multiple processing steps, including PCA-based cropping, the computation of robust point cloud descriptors and training of a Multilayer perceptron (MLP) on a large database of samples. A sophisticated temporal fusion technique boosts the overall robustness of recognition by taking into account data coming from previous classification steps. Overall results are very satisfactory when evaluated on a large benchmark set of ten different hand poses, especially when it comes to generalization on previously unknown persons

    A pragmatic approach to multi-class classification

    No full text
    We present a novel hierarchical approach to multi-class classification which is generic in that it can be applied to different classification models (e.g., support vector machines, perceptrons), and makes no explicit assumptions about the probabilistic structure of the problem as it is usually done in multi-class classification. By adding a cascade of additional classifiers, each of which receives the previous classifier's output in addition to regular input data, the approach harnesses unused information that manifests itself in the form of, e.g., correlations between predicted classes. Using multilayer perceptrons as a classification model, we demonstrate the validity of this approach by testing it on a complex ten-class 3D gesture recognition task
    corecore